CELLULAR AUTOMATA:
A DISCRETE VIEW
OF THE WORLD

Joel L. Schiff

@ WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

CHAPTER 3

ONE-DIMENSIONAL CELLULAR
AUTOMATA

Cellular automata may be viewed as computers, in which data represented by
initial configurations is processed by time evolution.
— Stephen Wolfram — Statistical Mechanics of Cellular Automata

The only reason for time is so that everything doesn’t happen at once.
— Albert Einstein

3.1 THE CELLULAR AUTOMATON

We will consider a lattice network of cells that are most commonly
square in shape, but the cells can be hexagonal and other shapes as
well. Each cell can exist (not simultaneously) in % different states,
where £ is a finite number equal to or greater than 2. One of these
states has a special status and will be known as the “quiescent state.”
The simplest case where each cell can exist in two possible states can

Cellular Automata: A Discrete View of the World. By Joel L. Schiff 39
Copyright (©) 2007 John Wiley & Sons, Inc.

40 ONE-DIMENSIONAL CELLULAR AUTOMATA

be denoted by the symbols 0 and 1 and graphically by white and black,
respectively. In more anthropomorphic terms, we can think of cells in
the 0 (white/quiescent) state as “dead” and those in the 1 (black) state
as “alive” (see Fig. 3.1).

The lattice of cells can be n(> 1) dimensional, but most of the work
on cellular automata (CA) has been for one and two dimensions, and we
will have no recourse for any higher dimensions. In the sequel, we shall
generally consider square cells as the basic unit of our automata. In the
one-dimensional case, these form a row of adjacent boxes. In principle,
the number of boxes in any array is infinite, but for practical purposes
it will simply be taken sufficiently large to illustrate the behavior in
question, often with certain conditions imposed on the cells along the
boundaries. In some cases, intentional restrictions will be made on the
size of the lattice as well.

In order for the cells of our lattice to evolve, we need time to change.
This is done in an unusual manner by considering changes to the states
of cells in the lattice only at discrete moments in time, that is, at time
stepst = 0,1,2,3,..., as in the ticking of a clock. The time ¢ = 0
is commonly reserved for the initial time period before any change of
the cells’ states has taken place. One further ingredient that is needed
for our cellular lattice to evolve with discrete time steps is a local rule
or local transition function governing how each cell alters its state
from the present instant of time to the next based on a set of rules
that take into account the cell’s current state and the current state of
its neighbors. Of course, which cells are considered to be neighbors
needs to be precisely defined. This alteration of cell states takes place
synchronously for all cells in the lattice. The transition function can be
deterministic or probabilistic, but in most cases (some exceptions are
models discussed in Chapter 5 on applications) we will consider only
the former. The lattice of cells, the set of allowable states, together with
the transition function is called a cellular automaton. Any assignment
of state values to the entire lattice of cells by the transition function
results in a configuration at any particular time step.

Therefore the three fundamental features of a cellular automaton are:

= uniformity: all cell states are updated by the same set of rules;
» synchronicity: all cell states are updated simultaneously;

» Jocality: the rules are local in nature.

THE CELLULAR AUTOMATON 11

Figure 3.1 A two-dimensional configuration with each cell taking one of
two state values, black or white according to a particular local transition
function. The first printed reference to a system such as the above, even using
the word automata, is to be found in the paper by Ulam [1950].

There has been some recent work on the asynchronous updating of
cell states (cf., e.g., Bersini and Detour [1994], Ingerson and Buvel
[1984], Lumer and Nicolis [1994], Schonfisch and de Roos [1999]).
This can be achieved in a number of different ways and is discussed in
Section 4.4.

Other liberties with the rules of a cellular automaton can be taken. In
one interesting example, galaxy formation has been simulated by Shul-
man and Seiden [1986] using a CA approach on a polar grid whose
rings rotate at different rates (see Fig. 3.2). Theirs was a simple perco-
lation model and achieves the basic structure of a spiral galaxy without
a detailed analysis of the astrophysical dynamics involved.

42 ONE-DIMENSIONAL CELLULAR AUTOMATA

Figure 3.2 In this setting the neighbors of each cell change due to the
differential rotation of the rings of the polar grid that is used to emulate
galaxy formation. The black circle is an active region of star formation which
induces star formation in its neighbors with a certain probability at the next
time step. At right is a typical galaxy simulation.

In another digression from the conventional CA definition, Moshe
Sipper [1994] considered different rules for different cells as well as
the evolution of rules over time. There will be other instances in the
sequel when we will stray slightly from strict adherence to the classical
cellular automaton definition.

A fundamental precept of cellular automata is that the local transition
function determining the state of each individual cell at a particular
time step should be based upon the state of those cells in its immediate
neighborhood at the previous time step or even previous time steps.
Thus the rules are strictly local in nature and each cell becomes an
information processing unit integrating the state of the cells around it
and altering its own state in unison with all the others at the next time
step in accordance with the stipulated rule. Thus, many global patterns
of the system are an emergent feature of the effect of the locally defined
transition function. That is, complex global features can emerge from
the strictly local interaction of individual cells each of which is only
aware of its immediate environment. This emergent behavior will be
discussed more comprehensively in Chapter 6, but it is a salient feature
that one should always be aware of in our development of cellular
automata theory.

TRANSITION FUNCTIONS 43

[HE B N BEEE BN EaEE pEnn

Figure 3.3 The eight possible neighborhood-states with » = 1 and & = 2.
Here, as will be our usual convention, black is 1 and white is 0.

ci-1(t)| ci(t) | civa(t)

Figure 3.4 The cell states of the central cell ¢; and its two nearest neighbors
c¢i—1 and ¢;41 at the time step ¢.

3.2 TRANSITION FUNCTIONS

Most of the dynamical features of cellular automata can be found in the
study of the one-dimensional case. Here we define a neighborhood of a
cell ¢ having radius (range) r as the r cells to the left of c and the same
number of cells to the right of ¢. Counting c itself, this neighborhood
contains 2r + 1 cells. In the simplest case r = 1 and £ = 2 for
the allowable states. In this instance, a three-cell neighborhood with
two different states 0 and 1 for each cell can be expressed in 23 =
different ways. All eight neighborhood-states with r = 1 and k£ = 2
are illustrated below (Fig. 3.3), and in general there are k**! one-
dimensional neighborhood-states.

Let us adopt this notation: ¢;(¢) denotes the state of the ith cell at
time ¢ (Fig. 3.4).

At the next time step, ¢ + 1, the cell state will be ¢;(t+ 1). Mathemat-
ically we can express the dependence of a cell’s state at time step ¢ + 1
on the state of its left-hand and right-hand nearest neighbors ¢; 1 (¢)
and c; 1 (t) at time step ¢ by the relation

Ci(t + 1) =@ [Ci—l(t)v Ci<t)7 Cit+1 (t)])

where ¢ is the local transition function. For example, consider the
simple transition rule

Cl(t + 1) = Ci_l(t) + Cl(t> + Cz’+1<t) mod 2, (31)

where mod 2 means taking the remainder after division of the indicated
sum by 2, resulting in either O or 1. We can put this rule into a transition
table format by adding ¢;_;(t) 4 ¢;(t) + ¢;41(t) mod 2 for the eight
possible different input values:

44 ONE-DIMENSIONAL CELLULAR AUTOMATA

ci—1(t) | ci(t) | civ1(t) | ci(t+1)
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1 (3.2)
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

A very convenient way to illustrate the allowable rules for one-
dimensional cellular automata with r = 1 and £ = 2 is to indicate
the state (color) of the middle cell at the next time step, given the state
(color) of itself and its two nearest neighbors (Fig. 3.5).

Here the middle cell at time ¢ (in the top row) has its state altered
according to the state of its two nearest neighbors and its own state
to yield the cell’s new state at time ¢ + 1 (bottom row). This also
represents the rule in Equation 3.1. Observe that in four of the eight
cases a black cell appears. One consequence of this is that if we took a
disordered array of a large number of cell sites, then the average fraction
(or density) of black cell sites that evolve after one iteration will be 0.5.

The cellular automaton defined by this rule has the graphical rep-
resentation depicted in Fig. 3.6 starting with a single black cell with
each subsequent generation of the automaton appearing on the next line
down.

So how many possible rules are there for » = 1 and k = 2? Since
there are eight possible neighborhood-states of three cells and each of
these results in two possible state outcomes for the middle cell, there
are 2% = 256 possible transition rules by which this can be achieved.
Wolfram described these as elementary cellular automata. We can also
identify the rule given in the form of the transition table 3.2, by its eight
output states (or rulestring) 10010110, which in base 2 happens to be
the number 150. So this rule is referred to as Rule 150 and is the rule

Figure 3.5

TRANSITION FUNCTIONS 45

Figure 3.6 By considering a white cell as being in state 0 and a black cell
in state 1, we can depict the evolution of the rule in the text starting with a
single black cell. Each new line downward represents the evolution of the
automaton at the next time step.

above depicted now in five different formats: Equation 3.1, transition
table 3.2, the rulestring, and Figs. 3.5 and 3.6.

In a similar fashion, all 256 elementary cellular automata can be
numbered starting from Figs. 3.7 to 3.10.

A complete illustration of all 256 elementary cellular automata start-
ing with a standard initial condition of one black cell is given in Ap-
pendix A. Many of the salient features found in cellular automata theory
can be observed in these elementary ones and we shall refer to them
often. These elementary cellular automata are examples of first order
automata in the sense that the state of a cell at time step ¢ 4 1 only de-
pends on the state of its neighbors at the previous time step ¢t. Whereas
in a second order automaton a cell’s state at time step ¢ + 1 is rather
more demanding and depends on the state of its neighbors at time steps
t — 1 as well as ¢, analogous to the way the Fibonacci sequence was
formed. Unless otherwise specified, we will mainly be considering first
order automata, although second order automata will come into play in
our discussion of reversibility.

Perhaps you are thinking that this is not so much to work with, so if
we merely increase the radius to r = 2, then there are 2° = 32 possible
neighborhood-states and 232 = 4,294, 967, 296 possible rules. On the

Figure C.1 The Langton looped Figure C.2 The parent (left) and
pathway in its initial configuration. offspring loops each propagating
The different colors represent the new construction arms after their
different cell states. connection has been severed.

Figure C.3 The replication continues indefinitely filling up the plane with
loops.

111

I
LT T

111
1

I
|

Figure C4 The minimal time
solution of Jacques Mazoyer of the
firing squad synchronization problem
using 6 states. Here n = 34 and time
increases from top to bottom. The
general is on the right-hand side and
also reaches the firing state (black)
together with all the soldiers in 67 time
steps.

Figure C.5 The three-state cellular
automaton Brian’s Brain created by
Brian Silverman. Waves of live cells
tend to sweep across the array. Here
the colors are: black = ready, red =
firing, blue = refractory.

Figure C.6 In this Greenberg-
Hasting model using the Moore
neighborhood, there are 2 excited
stages (yellow) and 3 refractory stages
(green). As above the transition at each
stage is from darkest to lightest. White
is the rested state. At least 2 excited
neighbors are required for a cell in the
rested state to become excited. The
figure shows the initial configuration
(left) and after 19 iterations (right).
Waves are generated in the center of the
figure and grow and move outward.

Figure C.7 The time evolution from a random initial state to the formation
of waves of the cyclic space automaton. The frames (left to right) represent
the debris, droplet, defect, and demon phases, respectively.

Figure C.8 Output from the hodgepodge machine using g = 30 (left) and
g = 40 (right), with the other parameters given in the text. Notice the wave
and spiral formations.

Figure C.9 In this Schelling model implementation, the left-hand side is
an initial random distribution of occupied cell sites (25% white vacant space)
and the right-hand side represents the segregated equilibrium state of the red
and blue cells reached after applying the contentment requirement that 37.5%
of the neighbors should be of the same kind.

Figure C.10 The evolution of cooperation (blue) in the spatial prisoner’s
dilemma, starting with a random array of 80% defectors (red) using a von
Neumann neighborhood. The payoffs are: {R;S;T; P} = {3;0;3.5;0.5}.

Figure C.11 Using the Nowak and May payoffs with b = 1.6 (left) and b =
1.85 (right), with an initial distribution of 10% defectors distributed randomly.
Here the central cell also plays against itself using a nine-cell neighborhood.
Color code is: blue = cooperator, green = new cooperator, red = defector,
yellow = new defector. Periodic boundary conditions are used. Cooperation
is seen to decrease with increasing values of the temptation parameter b.

Figure C.12 Employing a von Neumann neighborhood, these are three
images in the time evolution of the spatial prisoner’s dilemma with a value
of b = 1.4 and an initial sole defector set in a sea of cooperators. Periodic
boundary conditions are used. The color code is: blue = cooperator, green =
new cooperator, red = defector, yellow = new defector.

.'.-,L; g
Sl
\trt

o®
bt

Figure C.13 The evolution of the spatial iterated prisoner’s dilemma with
five competing strategies with the standard payoffs from an initial random
configuration. Each cell’s strategy plays off five times against its eight
neighbors and then adopts the strategy of its most successful neighbor. Color
code: Always Cooperate = red, Tit-for-Tat = purple, Random = cyan, Pavlov
= green, and Always Defect = black. The predominance of Tit-for-Tat over
time is evident, with the Random strategy hardly noticeable. The second row
has a certain level of noise introduced, that is, a cell will make a random move
in a single round, thus increasing the dynamics of the evolution. Pavlov now
holds its own against Tit-for-Tat in this instance. Images are taken at the initial
state, after 2, 5, 10, and 50 iterations.

Figure C.14 The WATOR-World of fish (dark blue), sharks (black), and
water (pale blue). There is an initial random mixing of 200 fish and 5 sharks.
The image is taken at the 297th time step where the fish population is now 93
and the shark population has risen to 177. Breeding ages for fish and sharks is
2 and 10 generations, respectively, and the starvation time for sharks has been
set at 3. The geometry of the local population mix can affect the dynamics.

Figure C.15 Stellar dendrite snow crystal forms with 5 = 0.35, v = 0;
8 =0.4,v=0.001; 8 = 0.45, v = 0.001, respectively.

Figure C.16 Plate form snow crystals. The first two have the same
parameter values, 5 = 0.95, v = 0, and represent different time steps. Third
image has 8 = 0.95, v = 0.0035.

Figure C.17 Thetime evolution of a single avalanche (cascade of topplings)
precipitated by the red cell in the first frame until a stable state is reached in
the last frame. Here blue = 0, green = 1, yellow = 2, orange = 3, red = 4 and
the topplings start when the site value is at least 4. The boundary was held at
state 0 but is omitted from the figures.

Figure C.18 Here we have color coded the steady-state temperature values
of our cellular automaton simulation from red (hot) to blue (cold). See text
for details.

*/ 01 | woiy urguel
spotad 1010e1)8 SUIARY SUISE(G| OJUI PIZIURSIO SI SARIS ZET8 = ;¢ JO SUNSISU0D doeds 91vIS YL, "¢ = I ‘€1 = N YIm N
ue JO uonoeiie Jo suiseq are A9y, odooss[a], 2oedg o[qqny 2yl £q paydei3ojoyd sorxees jou are asay], G dIN3I

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (PDF Settings of Springer's Preferred Vendor for Process Color Jobs.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

